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Abstract

Introduction: Harboring two copies of the apolipoprotein E (APOE) ε2 allele strongly

protects against Alzheimer’s disease (AD). However, the effect of this genotype on gray

matter (GM) volume in cognitively unimpaired individuals has not yet been described.

Methods:Multicenter brainmagnetic resonance images (MRIs) from cognitively unim-

paired ε2 homozygotes were matched (1:1) against all other APOE genotypes for rel-

evant confounders (n = 223). GM volumes of ε2 genotypic groups were compared to

each other and to the reference group (APOE ε3/ε3).
Results:Carrying at least one ε2 allele was associated with larger GM volumes in brain

areas typically affected by AD and also in areas associated with cognitive resilience.

APOE ε2 homozygotes, but not APOE ε2 heterozygotes, showed larger GM volumes in

areas related to successful aging.

Discussion: In addition to the known resistance against amyloid-β deposition, the

larger GM volumes in key brain regions may confer APOE ε2 homozygotes additional

protection against AD-related cognitive decline.

KEYWORDS

Alzheimer’s disease, Alzheimer’s disease signature, apolipoprotein E ε2 carrier, brain main-
tenance, brain morphology, brain reserve, cognitive reserve, magnetic resonance, multi-site,
resilience signature
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1 BACKGROUND

The apolipoprotein E (APOE) gene is the major genetic risk-modifying

factor for sporadic Alzheimer’s disease (AD). Carrying one or two

copies of the ɛ4 allele confers higher risk for AD (allelic dose odds ratio

[OR]: 6), whereas carrying the ɛ2 allele confers lower risk for AD (allelic

dose OR: 0.38).1–3 The increased AD risk as a consequence of carrying

at least one ɛ4 allele has been primarily related to a higher amyloid-β
(Aβ) burden in the brain, in a dose dependent manner (i.e., number of

ɛ4 alleles).4 However, neuroimaging studies have shown a relationship

between ɛ4 gene dose and lower brain glucose hypometabolism and

smaller graymatter (GM) volumes in AD-related brain areas,5,6 even in

cognitively unimpaired individuals. These findings suggest an ɛ4 gene

dose reduced capacity tomaintain brain health.7

On the other hand, the ε2 allele has received much less attention,

presumably due to the low frequency of this polymorphism in the gen-

eral population (8.4%).8 APOE ɛ2 carriers have lower Aβ burden among

non-demented participants.9,10 However, multiple studies suggest

that the ɛ2 allele may reduce the risk of AD through Aβ-independent
pathways.11 One of these pathways may be through maintained GM

volumes across the lifespan. In healthy adolescents no differences

between ɛ2 and ɛ4 carriers or dose dependent effects of these alleles

were found in hippocampal volumes.12 However, potential gene dose

effects of the ɛ2 allele in adults remain to be described. Previous

literature on adults has only reported differences between ɛ2 carriers

and non-carriers, or against ε4 carriers, all showing larger GM volumes

or cortical thickness in association with the ε2 allele, in AD-sensitive

regions such as the entorhinal cortex.13–16 These results suggest

that ɛ2 carriers may have higher brain reserve,7 which might allow

them to better cope with aging and pathology. In line with this, it has

been reported that ɛ2 carriers remain cognitively unimpaired for a

longer period even in the rare case of developing AD pathology (i.e.,

Aβ and tau).17,18 Studying the brain properties in late-/middle-aged

cognitively unimpaired ɛ2 carriers may increase our understanding of

the biological mechanisms associated with this protective allele.

Importantly, to better clarify themechanisms related to theAPOE ɛ2
allele, it would be necessary to test its impact both on brain areas that

are the target of incipient degeneration, and on those related to cog-

nitive resilience. The thinning of specific areas such as the entorhinal

cortex or temporal areas has shown a tight association with the pro-

gression ofAD.19,20 On theother hand, themaintenance ofmetabolism

in other areas, such as the anterior cingulate or the temporal pole, has

been related to preserved cognitive function.21 These facts suggest

that metabolic and volumetric measures in these regions are of partic-

ular interest when studying characteristics related to AD.

This studyaimed to investigate theassociationbetween theAPOE ɛ2
genotype and brainmorphology in late-/middle-aged cognitively unim-

paired individuals, with a focus on ɛ2/ɛ2 individuals and ɛ2 allele dose

effects.We performed two sets of analyses: a hypothesis-driven analy-

sis in which we studied the ɛ2 allele effects on areas related to AD (i.e.,

AD signature and resilience signature); and a hypothesis-free approach

in which we expanded these analyses to the whole brain. For both sets

of analyses,GMvolumesof all ε2genotypic groups (i.e., ɛ2/ɛ2, ɛ2/ɛ3, and
ɛ2/ɛ4) were compared to the reference ε3/ε3 group, as well as to one

another. The genotypic dose-dependent effects (i.e., dominant, addi-

tive, and recessive) of the ε2 allele were also investigated. Finally, we

computed a continuous measure to capture the risk of AD related to

theAPOE genotype (i.e.,APOE genotype-relatedAD risk). Effects of this

measure on GM volumes were explored and compared to those of the

ε2 allele. We hypothesized that (1) APOE ε2 carriership would be asso-

ciated to larger GMvolumes in areas known to be affected in AD19 and

areas related to successful aging,21 (2) a higher dose of ε2 allele would

be related to largerGMvolumes, and (3) theseeffectswould contribute

to the global APOE genotype-related AD risk effect on GMvolumes.

2 METHODS

2.1 Participants

Leveraging a previous multi-cohort study,22 we checked the cohorts

for cognitively unimpaired APOE ε2/ε2 individuals and extended

our search to new cohorts. The final selection included: the ALFA

(Alzheimer’s and Families) study from Barcelona, Spain;23 the Amster-

dam Dementia Cohort (ADC) from the Netherlands;24,25 the Gothen-

burg H70 Birth cohort study (H70) from Sweden;26 the BioFINDER

(www.biofinder.se) from Sweden; the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI; http://adni.loni.usc.edu/) from the United States

and Canada; and the Open Access Series of Imaging Studies (OASIS;

http://www.oasis-brains.org/) from the United States27 (see support-

ing information for a description of each cohort). The search in AIBL

(Australian Imaging, Biomarker & Lifestyle Study of Ageing; https://

aibl.csiro.au/) and in Japanese ADNI (https://humandbs.biosciencedbc.

jp/en/hum0043-v1) cohorts did not return any APOE ε2/ε2 individ-

ual in their magnetic resonance imaging (MRI) arms. The search in

AddNeuroMed28 and the CBAS (Czech Brain Aging Study)29 cohorts

http://www.biofinder.se
http://adni.loni.usc.edu/
http://www.oasis-brains.org/
https://aibl.csiro.au/
https://aibl.csiro.au/
https://humandbs.biosciencedbc.jp/en/hum0043-v1
https://humandbs.biosciencedbc.jp/en/hum0043-v1
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only identified APOE ε2/ε2 individuals with cognitive impairment, and

so were not included in this study.

We first selected all cognitively unimpaired APOE ε2/ε2 individuals

who had T1-weighted MRI data available. The criteria for classifying

individuals as cognitively unimpairedwere similar in all cohorts, includ-

ing: normal global cognition as reflected by a Clinical Dementia Rating

(CDR) score of 0 or a Mini-Mental State Examination (MMSE) score of

25 or higher, and/or normal cognition as decided by a multidisciplinary

consensus panel of experts (see supporting information). After select-

ing the APOE ε2/ε2 individuals as the reference group, we selected one
participant of each of the other APOE genotypes to match every APOE

ε2/ε2 individual using age, sex, and education as matching variables,

within each of the cohorts. Because matching was performed within

cohorts, the six APOE genotype groups were also matched for scan-

ner/protocol except for the ADNI, because the ADNI was designed to

provide comparable images across scanners and protocols (http://adni.

loni.usc.edu/methods/mri-tool/mri-analysis/). In the ADC, some indi-

viduals did not get a match with exactly the same MRI protocol. For

those individuals, we selected the most similar MRI protocol in terms

of manufacturer, field strength, and acquisition parameters.

2.2 Image processing

Participants were scanned using T1-weighted sequences with com-

parable scanning protocols and image resolution across cohorts (see

the supporting information). GM was segmented and warped into

Montreal Neurological Institute (MNI) space following a standard

procedure using SPM12 (see supporting information). Images were

spatially smoothed with an 8-mm full width at half maximumGaussian

kernel. Total intracranial volume (TIV) was computed as the sum of

GM, white matter, and cerebrospinal fluid volume partitions using the

CAT12 toolbox.

To calculate regional GM volume we used the cortical and subcorti-

cal areas from the Desikan-Killiany30 atlas. We summed the intensity

of the modulated GM images in the MNI space in each region across

individuals. We also created two composite regions of interest (ROIs)

to specifically investigate thebrain areas known tobe typically affected

in AD, as well as areas known to be associated with successful aging or

resilience. Following previous studies, the AD signature ROI was cre-

ated by combining the entorhinal cortex, inferior and middle temporal

and fusiform gyrus19; and the resilience signature ROI was created by

combining the anterior cingulate and temporal pole regions.21 We also

performed asymmetry analysis (see the next section), which included a

medial-temporal lobe (MTL) composite ROI that combined hippocam-

pus, amygdala, and parahippocampal ROIs.16

2.3 Statistical analysis

Wecompared the demographic characteristics acrossAPOE genotypes

using analysis of variance (for continuous variables) and χ2 (for cat-

egorical variables). All analyses described below for APOE effects on

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed previous lit-

erature related to apolipoprotein E (APOE) effects on

Alzheimer’s disease (AD)-related phenotypes, with spe-

cific attention to those linked to brain morphology.

Although studies focusing on the effects of the APOE ε2
allele, and especially of the ε2 homozygosity, are scarce,

we have cited those related to our research.

2. Interpretation:Our study increases our knowledge about

APOE, and especially APOE ε2, effects on gray matter

volumes and suggest a mechanism through which APOE

ε2 homozygotes may maintain their cognitive function

throughout life even in the improbable case of developing

AD pathology.

3. Future directions: In this study, we have proved the value

of studying gene dose effects of the ε2 allele over the

frequently investigated carriership effects. Future stud-

ies about the APOE ε2 allele need to further explore these
gene dose effects on other important AD-related pheno-

types. Thismay help us to understand the exceptional low

risk of these subjects to develop AD dementia.

HIGHLIGHTS

∙ Cognitively unimpaired ε2 carriers have larger graymatter

(GM) volumes than ε3 homozygotes.

∙ Apolipoprotein E (APOE) ε2 carriership is associated with

larger GM volumes in the Alzheimer’s disease signature.

∙ APOE ε2 homozygotes have larger GM volumes in areas

related to cognitive resilience.

∙ GenotypicAPOE effect onGMvolume is not only due to ε4
but also to ε2 effects.

GM volumewere performed in two different sets of analyses. First, we

specifically tested for APOE effects on areas related to AD (i.e., AD sig-

nature and resilience signature). Second, we expanded the approach to

a whole-brain analysis.

2.3.1 Comparisons between APOE ε2 genotypic
groups

We first compared each ε2 genotypic group (i.e., ε2/ε2, ε2/ε3, and ε2/ε4)
to the reference group (i.e., ε3 homozygotes), and also to each other

(i.e., ε2/ε2 vs. ε2/ε3, ε2/ε2 vs. ε2/ε4, and ε2/ε3 vs. ε2/ε4). Generalized lin-
ear models were used to compare each pair of groups to GM volume

as the dependent variable and the APOE genotype as the variable of

http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
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interest. Age, sex, education, scanner (as a dummy variable), and TIV

were included as covariates. Themodels used were analogous for both

sets of analyses (i.e., AD composites andwhole brain).

2.3.2 Dose-dependent effects of the APOE ε2 allele
on GM volume

The second aim of this study was to investigate particular dose-

dependent effects of the ε2 allele on GM volumes. Similar statistical

models were used in these analyses but including only ε2 carriers and

ε3 homozygotes in this case. APOE ε2/ε4 participants were excluded

from this analysis to avoid the influence of the APOE ε4 allele.31 Con-

trasts were designed to test for dominant (i.e., APOE ε2 carriers vs.

APOE ε3/ε3 individuals), additive (i.e., APOE ε2/ε2 vs. APOE ε2/ε3 vs.

APOE ε3/ε3), and recessive (i.e., APOE ε2/ε2 vs. APOE ε2/ε3 plus APOE

ε3/ε3) effects of the APOE ε2 allele.32

As an additional analysis we also investigated right-left hemispheric

asymmetry16,33 on GM volume in the MTL as a composite and each

of the ROIs included in the MTL composite (i.e., hippocampus, amyg-

dala, and parahippocampus).We replicated the previous analysis using

the asymmetry metrics as dependent variables and the same covari-

ates excludingTIV, as the asymmetry value is already normalized by the

total volume of the region itself.

2.3.3 Comparison of ε2 and global APOE
genotype-related AD risk effects on GM volume

The third aimof this studywas to investigate theAPOE genotypic effect

on GM volume and compare it to the previous ε2 dose-dependent

effects. We created a new variable that we called “APOE genotype-

related AD risk,” which encoded the risk of AD for each of the geno-

types as a continuous variable. Our goal was to create a measure

related to the APOE genotype that would capture the related risk of

developing AD and investigate whether this was associated to GM vol-

umes. This variablewas calculated by log-transforming previously pub-

lished odds ratios for developing AD associated to each APOE geno-

type, with APOE ε3/ε3 individuals as the reference group (Table S1 in

supporting information).3 We repeated the composite-based and the

whole-brain analyses using the APOE genotype-related AD risk value

as an independent variable (as a continuous variable). In addition, we

also performed Spearman’s rank correlations between the regional

effects of the APOE genotype-related AD risk and the dose-dependent

effects of the ε2 allele. These correlations aimed to compare global

APOE and ε2 standalone effects on GMvolumes.

For all three objectives, statistical significance was set at P < 0.05

using the false discovery rate (FDR) adjustment for multiple testing

(hypothesis-free approach), and at uncorrected P<0.05 for the a priori

selected areas related to AD (hypothesis-driven approach). In addition,

supporting information shows the results from uncorrected P< 0.05 in

the hypothesis-free approach, for completeness of information.

3 RESULTS

3.1 Participants

The sample was composed of 223 cognitively unimpaired individu-

als, including 38 APOE ε2/ε2 individuals and 38 matched individuals

for each of the other APOE genotypes (except for the APOE ε2/ε4
group, which included 33 participants due to unavailability of suitable

matches for5 cases). All individualswerematched for age, sex, andedu-

cationwithin the center. As shown inTable 1, therewere no statistically

significant differences in these variables by theAPOE group.Moreover,

MMSEscores andTIVdidnot showsignificantdifferences amongAPOE

groups.

3.2 Comparisons between APOE ε2 genotypic
groups

We first investigated whether there were significant differences

between groups on two AD-related GM volume ROI composites: the

AD signature and the resilience signature. APOE ε2/ε3 participants

had larger GM volume in the AD signature areas compared to ε3
homozygotes (Table 2 and Figure 1).Within the resilience signature, ε2
homozygotes had larger GM volumes than the ε3/ε3 and ε4/ε4 groups.

In the whole-brain analysis, ε2/ε2 and ε2/ε3 APOE groups showed

larger GM volumes than ε3 homozygotes (Figure 2A). Differences

between ε2/ε2 and ε3 homozygotes and between ε2/ε3 and ε3 homozy-

gotes were widespread across the brain. On the other hand, ε2/ε4 par-
ticipants only showed larger volumes in the inferior parietal and in the

inferior temporal gyri, although these differences did not survive the

FDR adjustment (Figure S1A in supporting information).

When studying differences between ε2 genotypic groups, we found
the largest differences between ε2/ε2 and ε2/ε4 groups, including bilat-
eral postcentral gyri, and right parahippocampal and posterior cingu-

late gyri (Figure2B).APOE ε2homozygotesonly showed larger volumes

than ε2/ε3 participants in the right precentral gyrus, but this difference
did not survive the FDR adjustment (Figure S1B). In addition, ε2/ε3 had
larger volumes than ε2/ε4 participants in bilateral postcentral gyri.

3.3 Dose-dependent effects of the APOE ε2 allele
on GM volume

In the ROI analyses, we found a significant dominant effect of higher

GM volume associated with the ε2 allele on both AD-related compos-

ites (Table 2). The additive effect also showed a trend to significance in

the same direction for the resilience signature, but no other significant

effects were observed.

Figure 3 shows the significant areas that had a positive association

between GM volume and each of the gene-dose effects of the ε2 allele
in whole-brain analyses, after the FDR adjustment for multiple test-

ing. Uncorrected results can be found in the supporting information
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F IGURE 1 Association between APOE genotype and GMvolume in AD-related areas. Adjusted GMvolume in areas affected in AD (AD
signature;19 left) and in areas known to be associated with successful aging or resilience (resilience signature; right)21 by APOE genotype. GM
volumes were adjusted by age, sex, education, scan, and TIV. *P< 0.05; ⋅ P< 0.10. AD, Alzheimer’s disease; APOE, apolipoprotein E; GM, gray
matter; TIV, total intracranial volume

for completeness of information (Figure S2). The dominant effect was

the most widespread including multiple AD-related areas such as the

fusiform gyrus, precuneus, or the posterior cingulate. Additive effect

was alsowidespread, although less so than the dominant effect. Finally,

the recessive effect was only significant in the paracentral and the pars

opercularis of the right hemisphere. Negative associations were not

observed for any of the three effects (i.e., the ε2 allele was not associ-

ated with a smaller GM volume in any brain region).

Additional analyses for asymmetry effects in the subregions ofMTL

showed that the ε2 recessive, dominant, and additive effects were

stronger in the right hemisphere only in the parahippocampal gyrus

(Figure S3 in supporting information). More specifically, ε2 homozy-

gotes had greater right–left asymmetry (R> L) than ε3 homozygotes.

3.4 Comparison of ε2 and global APOE
genotype-related AD risk effects on GM volume

In the composite-based analysis, the APOE genotype-related AD risk

showed a negative association with GM volume in the AD signature

(F= 4.61, P= 0.033) and a trend in the resilience signature, in the same

direction (F=2.81,P=0.096). Both results indicate lowerGMvolumes

for a higher risk of AD, which is related to the APOE genotype in these

areas (Table 2). Figure 4A shows the specific regions of this negative

correlation for the APOE genotype-related AD risk with GM volume.

In particular, the increased risk of AD dementia related to APOE geno-

type correlated with less GM volume in brain areas overlapping with

parts of the AD signature such as the entorhinal and the fusiform, as

well as with parts of the resilience signature such as the anterior cin-

gulate. Results uncorrected for multiple comparisons can be found in

Figure S4 in supporting information.

We then compared these results to those ones from dose-

dependent effect of the ε2 allele, to investigate whether the GM vol-

ume effects related to the risk of ADare only due to the ε4 allele ormay

also be due to the ε2 allele. We found significant negative correlations

for the dominant ε2 allele effect (ρ = –0.35, P = 0.004) and the addi-

tive ε2 effect (ρ= –0.27,P=0.028), indicating opposite effects of the ε2
allele (i.e., protective) and theAPOE genotype-relatedAD risk (i.e., dele-

terious). No significant correlations were observed for the recessive ε2
effect (ρ= –0.13, P= 0.275, Figure 4B).

4 DISCUSSION

In this multi-cohort study, we investigated genotypic and dose-

dependent effects of the ε2 allele on GM volumes in late-/middle-aged

cognitively unimpaired individuals. As hypothesized, we found that the

ε2 allelewas associatedwith largerGMvolumes in brain areas relevant

for AD. However, the dose-dependent effect of this allele was distinct

for different areas. Regions typically affected by AD-related neurode-

generation were similarly protected by the carriership of at least one

ε2 allele, regardless of their load. On the other hand, areas relatedwith

cognitive maintenance presented larger volumes in relation with the

dose (i.e., number) of this allele. In particular,APOE ε2homozygotes, but
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F IGURE 2 Comparisons between APOE ε2 genotypic groups. Comparisons between APOE ε2 genotypic groups and APOE-ε3 homozygotes as
the reference group (A); and between each pair of APOE ε2 genotypic groups (B). Colors indicate the effect size of each effect in regions that were
statistically significant (P< 0.05 FDR-adjusted). AD, Alzheimer’s disease; APOE, apolipoprotein E; FDR, false discovery rate; GM, graymatter; LH,
left hemisphere; RH, right hemisphere

F IGURE 3 Dose-dependent effects of the APOE ε2 allele. Dose-dependent effects of the ε2 allele on GM volume (from left to right: dominant,
additive, and recessive). APOE ε2/ε4 participants were not included in this analysis. Colors indicate the effect size of each effect in regions that
were statistically significant (P< 0.05 FDR-adjusted). AD, Alzheimer’s disease; APOE, apolipoprotein E; FDR, false discovery rate; GM, graymatter;
LH, left hemisphere; RH, right hemisphere
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F IGURE 4 APOE genotype-related AD risk effect on GM volume and association to APOE ε2 effects. APOE genotype-related AD risk effects on
GM volume (A). Colors indicate the effect size of each effect in regions that were statistically significant (P< 0.05 FDR-adjusted). Associations
between dose-dependent effects of the ε2 allele (βstd) on GM volume (from left to right: dominant, additive, and recessive) and APOE
genotype-related AD risk effect (βstd) on GM volume. Spearman’s ρ and P-values are shown in the left bottom corner of each plot. AD, Alzheimer’s
disease; APOE, apolipoprotein E; FDR, false discovery rate; GM, graymatter; LH, left hemisphere; RH, right hemisphere

not APOE ε2 heterozygotes, showed larger GM volumes than APOE ε3
homozygotes in the resilience signature. Thiswas further supported by

the dose-dependent effects analyses, in which we found a trend to sig-

nificance in the additivemodel for the ε2 allele, in the resilience but not
in the AD signature. Finally, the effect of this protective allele seemed

to be spatially related to that of an AD risk measure including all APOE

genotypes, suggesting that the ε2 allele plays an opposing effect to that
of the ε4 allele on GM volumes.

Our findings extend previous studies showing that having at least

one ε2 allele confers larger GM volumes in areas known to be affected

in AD.13–15 For instance, the effect of the ε2 carriership on entorhi-

nal volume has previously been observed in cognitively unimpaired

individuals,13,15 as well as in patients with mild cognitive impairment

(MCI) and AD dementia.34 A stepwise difference (ɛ2 carriers > ɛ3/ɛ3
individuals > ɛ4 carriers) in cortical thickness in the entorhinal cor-

tex was also found in children and adolescents.35 Further, our results

together with a previous study with Aβ-positive subjects suggest that
this protective effect of the ɛ2 allele in the MTL, and more specifi-

cally in the parahippocampus, may be more pronounced in the right

hemisphere.16

In our study we also expand previous findings to regions related

with cognitive resilience.21,36 This result suggests that the well-known

low risk of cognitive decline in ε2 carriers may not only be due to

a low risk of accumulating Aβ4 and tau37 pathologies (i.e., resistance

to AD pathology), but also to preserved brain integrity in areas that

are associated with greater resilience to, or capacity to cope with AD

pathology.21 A contribution of our study is that we demonstrated that

the protective effect on these areas was particularly related to the

homozygosity of the ε2 allele. Greater GM volume in areas related

to cognitive resilience may also explain why the oldest old ε2 carri-

ers could remain clinically non-demented even when displaying ele-

vated AD pathology.17,18 With these results in mind, we propose that

the increased brain reserve found in ε2 carriers, and especially in ε2
homozygotes, may promote their maintained cognitive functions, even

in the rare case of developing AD pathology.

The unique design of our study allowed us to study the ε2 allele

effects on GM volume in more detailed ways than previous studies.

More specifically, we found that carrying one ε2 allele always seemed

to confer an advantage compared to ε3 homozygotes, even when an ε4
allele is also present, although this last result did not survive the adjust-

ment formultiple comparisons.Moreover, our results suggest that hav-

ing an extra copy of the ε2 allele did not translate into a major gain

in areas usually related to neurodegeneration, but it did on resilience

areas. Thus, suggesting that carrying one ε2 allele may be sufficient

to prevent or decrease AD-related neurodegeneration, maybe in part

through lowering AD pathology levels. However, adding an extra copy

of the ε2 allele may not be beneficial for GM integrity in these areas,

whichmaybe related to the increased risk ofAPOE ε2 carriers to having
cerebrovascular problems.16 On the other hand, being ε2 homozygote

increased brain reserve in areas related to cognitive resilience, which

may in turn delay their cognitive decline and explain their higher sur-

vival rate without AD dementia.3 Altogether, our results highlight that

comparing all ε2 genotypic groups is superior tomerging all ε2 carriers,
when it comes to disentangling the specific effect of the ε2 allele and

advance our understanding of its protective effects.3 This accomplish-

ment was an advantage of our large multi-cohort design that has not

been possible in previous single-center studies.

Finally, we investigated the effect of a measure capturing the risk

of AD due to the APOE genotype (i.e., APOE genotype-related AD risk)

on GM volumes and compared it to dose-dependent effects of the ε2
allele. As hypothesized, higher APOE genotype-related AD risk con-

ferred smaller GM volumes both in areas targeted by AD pathology

and areas related with brain resilience.19–21 This finding is important

and extends previous reports on the APOE ε4 allele5,38,39 to now also

incorporate the effect of the APOE ε2 allele. Our results suggest that

carrying at least one ε2 allele contributed to this effect. The reason

the recessive effects of the ε2 allele are not associated with those

of the APOE genotype-related AD risk may be related to its corre-

sponding upstream mechanisms. While the APOE genotype-related

AD risk may show more important effects on AD-neurodegeneration
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areas,19 which may be partially due to Aβ and tau deposition effects,

ε2 homozygotes showed a more pronounced effect on areas of cogni-

tive resilience not typically associatedwith pathology, whichmay come

from developmental characteristics.

The potential underlying mechanisms for the larger GM volumes in

APOE ε2 carriers areunknownand theydeserve further research.How-
ever, previous studies suggested that these mechanisms may involve

both Aβ-dependent and -independent pathways.11 APOE ε2 carriers

produce the APOE ε2 isoform, which is not only beneficial in terms

of Aβ production, aggregation, and clearance,40,41 but also protects

against Aβ toxicity through a reduction of its oligomerization.42 There-

fore, by avoiding Aβ pathology, late-/middle-aged APOE ε2 homozy-

gotes may be relatively spared of Aβ-related effects on GM volume,

particularly compared to ε4 carriers. In addition, the APOE ε2 isoform

has also shown Aβ-independent effects that may explain our current

results. For instance, the APOE ε2 isoform promotes synaptic integrity,

facilitates anti-oxidant and anti-inflammatory activity, and may medi-

ate neuronal growth through a more efficient lipid and cholesterol

metabolism (see Liu et al.,2 Li et al.,11 Suri et al.,40 and Yamazaki et al.41

for detailed reviews). Altogether, thesemechanismsmay induce better

neuronal health throughout the full lifespan and may partially explain

the observed larger GM volumes in APOE ε2 carriers.
The multi-cohort nature of our study is not free from limitations.

First, not all participants in this sample had biomarkers of AD pathol-

ogy available, which prevented us from investigating whether lower

GM volume in the AD signature is in fact related to AD pathology.

However, the extremely low prevalence of Aβ pathology in cognitively
unimpaired APOE ε2 carriers suggests that the impact of this limita-

tion is minor on the observed ε2 effects, which constitute the main

focus of our work.3,43 Second, to maximize the number of APOE ε2/ε2
individuals we pooled MRI data from different scanners, which may

have introduced bias related to scanner-specific features such as geo-

metric distortion and tissue contrast. We minimized this issue by a

strict control of several factors, at two levels. At the study design level,

we strictly matched the six APOE genotype groups in terms of MRI

scanner/protocol, in addition to our matching for age, sex, and years

of education. In addition to this control at the design level, we con-

ducted another correction at the statistical level, to remove the poten-

tial residual confounding effect of all these variables, including theMRI

scanner/protocol. Therefore, these variables are unlikely to affect our

current results in a significant manner. Third, the criterion for “normal

cognition” was similar but varied slightly across cohorts. Nonetheless,

all the cohorts used criteria commonly applied in clinical routine and in

aging research.

In conclusion, in late-/middle-aged cognitively unimpaired individ-

uals, the APOE ε2 allele is associated with larger GM volume in AD-

related brain regions. However, distinct dose-dependent effects of this

allele were observed in different areas of the brain. It is important

to note that APOE ε2 homozygotes had a specific protective effect

in areas related to cognitive resilience. Furthermore, APOE ε2 effects

on GM volumes were similar, but opposed, to those related to the

APOE ε4 genotypes. Altogether, our large multi-cohort data advo-

cates for increased brain reserve in APOE ε2 carriers, especially in ε2
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TABLE 2 APOE effects on GMvolumes in AD-related areas

AD signature Resilience signature

βstd [95%CI] P-value βstd [95%CI] P-value

Comparisons between ε2 genotypic groups

ε2/ε2 vs. ε3/ε3 1.41 [–0.56, 3.38] 0.161 2.36 [0.39, 4.33] 0.019

ε2/ε3 vs. ε3/ε3 2.71 [0.74, 4.69] 0.007 1.66 [–0.33, 3.63] 0.101

ε2/ε4 vs. ε3/ε3 0.95 [–1.02, 2.92] 0.342 0.62 [–1.36, 2.59] 0.540

ε2/ε2 vs. ε2/ε3 –1.22 [–3.19, 0.74] 0.222 0.75 [–1.22, 3.65] 0.453

ε2/ε2 vs. ε2/ε4 0.41 [–1.56, 2.38] 0.680 1.67 [–0.31, 3.64] 0.098

ε2/ε3 vs. ε2/ε4 1.61 [–0.36, 3.58] 0.109 0.95 [–1.03, 2.93] 0.347

Dose-dependent effects

Dominant ε2 2.64 [0.66, 4.62] 0.010 2.07 [0.09, 4.05] 0.041

Additive ε2 1.60 [–0.39, 3.58] 0.114 1.92 [–0.07, 3.87] 0.058

Recessive ε2 0.09 [–1.88, 2.07] 0.926 0.21 [–0.02, 0.47] 0.239

APOE genotype-related AD risk –2.15 [–4.11, –0.17] 0.033 –1.67 [–3.63, 0.30] 0.096

Notes: Results of the analysis of the comparisons between ε2 genotypic groups; dose-dependent (additive, recessive, and dominant) effects of the ε2 allele

andAPOE genotype-relatedAD risk effect onGMvolume in areas related toAD.19,21 The first column of each effect shows the βstd (calculated as the estimate

divided by SE) and 95%CI, the second the respective P-value. A negative value of the last row shows a negative correlation betweenGMvolume and theAPOE
genotype-related AD risk, meaningmore GMvolume for a lower AD risk related to APOE genotype. Significant results (P< 0.05) are shown in bold and those

that showed a trend to significance (P< 0.100) are shown in italics

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CI, confidence interval; GM, gray matter; ROI, region of interest; SE, standard error; βstd,
standardized β.

homozygotes, which may in turn confer them additional protection

against AD-related cognitive decline, independent of the well-known

effects of APOE on Aβ.
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